
Building Cloud-Native Applications

Slides: http://bit.ly/buildcnapps
1 / 239

http://bit.ly/buildcnapps


Agenda - Day 1

Workshop runs from 9:00 AM to 5:00 PM

30 min co�ee breaks (10:30AM and 1:30PM)
1h lunch break (12:30PM)

Multiple sections - theory + exercises

Introduction to Cloud-Native
Cloud-Native Building Blocks
Kubernetes
APIs

2 / 239



Introduction

I am Peter (@pjausovec)
Software Engineer at Oracle
Working on "cloud-native" stu�
Books:

Cloud Native: Using Containers, Functions, and Data to Build Next-Gen Apps
SharePoint Development
VSTO For Dummies

Courses:
Kubernetes Course (https://startkubernetes.com)
Istio Service Mesh Course (https://learnistio.com)

3 / 239

https://twitter.com/pjausovec
https://www.amazon.com/Cloud-Native-Containers-Next-Generation-Applications/dp/1492053821
https://startkubernetes.com/
https://learnistio.com/


Introduction to Cloud-Native

4 / 239



Understanding Cloud-Native

"... natively utilizies service and infrastructure from cloud computing providers..."

"... approach to build & runbuild & runbuild & runbuild & runbuild & run apps that exploit the advantages of the cloud computing model"

"... describes container-basedcontainer-basedcontainer-basedcontainer-basedcontainer-based environments... deployed as microservicesmicroservicesmicroservicesmicroservicesmicroservices and managed on 
elastic infrastructureelastic infrastructureelastic infrastructureelastic infrastructureelastic infrastructure through agile DevOpsDevOpsDevOpsDevOpsDevOps, continuous deliverycontinuous deliverycontinuous deliverycontinuous deliverycontinuous delivery work�ows."

"... build, run, and improve apps based on well-known techniques and technologies for cloud
computing."

"... collection of small, independent, and loosely coupled servicesloosely coupled servicesloosely coupled servicesloosely coupled servicesloosely coupled services."

5 / 239



CNCF De�nition

Cloud native technologies empower organizations to build and run scalable applicationsscalable applicationsscalable applicationsscalable applicationsscalable applications in
modern, dynamic environments such as public, private, and hybrid cloudscloudscloudscloudsclouds. 
Containers, service meshes, microservices, immutable infrastructures, and declarative APIsContainers, service meshes, microservices, immutable infrastructures, and declarative APIsContainers, service meshes, microservices, immutable infrastructures, and declarative APIsContainers, service meshes, microservices, immutable infrastructures, and declarative APIsContainers, service meshes, microservices, immutable infrastructures, and declarative APIs
exemplify this approach.

These techniques enable loosely coupled systemsloosely coupled systemsloosely coupled systemsloosely coupled systemsloosely coupled systems that are 
resilient, manageable, and observableresilient, manageable, and observableresilient, manageable, and observableresilient, manageable, and observableresilient, manageable, and observable. Combined with robust automationrobust automationrobust automationrobust automationrobust automation, they allow
engineers to make high-impact changes frequently and predictablyfrequently and predictablyfrequently and predictablyfrequently and predictablyfrequently and predictably with minimal toil.

https://github.com/cncf/toc/blob/master/DEFINITION.md
6 / 239

https://github.com/cncf/toc/blob/master/DEFINITION.md


Pets vs. cattle

Pets

Treat your infrastructure like pets
Give them names, IP addresses, ...
Care of them, keep them updated

Cattle

Everything is just a number
No attachment
If something goes wrong, you replace it

7 / 239



Understanding Cloud-Native

Apart from focusing on business logic, you will realize the following when building cloud-
native applications for the �rst time:

I am dealing with services running across multiple machinesacross multiple machinesacross multiple machinesacross multiple machinesacross multiple machines
I am dealing with network and communicationnetwork and communicationnetwork and communicationnetwork and communicationnetwork and communication between these services

8 / 239



Challenges

What are distributed systems?

9 / 239



Cloud-native apps are distributed systems*

*computers connected through a network and appearing as a single computer
10 / 239



Challenges

New technologies and tools

11 / 239



Landscape Card Mode Serverless Members 100%Tweet 1186

A
pp

 D
ef

in
iti

on
 a

nd
 D

ev
el

op
m

en
t

Database

CNCF Graduated CNCF Incubating

Streaming & Messaging

CNCF Incubating CNCF Incubating

Application Definition & Image Build

CNCF Graduated CNCF Incubating

Continuous Integrati

CNCF Incubating

O
rc

he
st

ra
tio

n 
&

M
an

ag
em

en
t

Scheduling & Orchestration

CNCF Graduated

Coordination & Service
Discovery

CNCF Graduated CNCF Incubating

Remote Procedure
Call

CNCF Incubating

Service Proxy

CNCF Graduated CNCF Incubating

API Gateway Se

CNCF Incubating

Ru
nt

im
e

Cloud Native Storage

CNCF Incubating

Container Runtime

CNCF Graduated CNCF Incubating

Cloud Native Network

CNCF Incubating

12 / 239

https://landscape.cncf.io/
https://landscape.cncf.io/format=card-mode
https://landscape.cncf.io/format=serverless
https://landscape.cncf.io/format=members
https://twitter.com/intent/tweet?text=Cloud%20Native%20Landscape%20from%20%40CloudNativefdn&url=https%3A%2F%2Flandscape.cncf.io%2Ffullscreen%3Dyes
https://landscape.cncf.io/category=app-definition-and-development&format=card-mode&grouping=category
https://landscape.cncf.io/category=database&format=card-mode&grouping=category
https://landscape.cncf.io/category=streaming-messaging&format=card-mode&grouping=category
https://landscape.cncf.io/category=application-definition-image-build&format=card-mode&grouping=category
https://landscape.cncf.io/category=continuous-integration-delivery&format=card-mode&grouping=category
https://landscape.cncf.io/category=orchestration-management&format=card-mode&grouping=category
https://landscape.cncf.io/category=scheduling-orchestration&format=card-mode&grouping=category
https://landscape.cncf.io/category=coordination-service-discovery&format=card-mode&grouping=category
https://landscape.cncf.io/category=remote-procedure-call&format=card-mode&grouping=category
https://landscape.cncf.io/category=service-proxy&format=card-mode&grouping=category
https://landscape.cncf.io/category=api-gateway&format=card-mode&grouping=category
https://landscape.cncf.io/category=service-mesh&format=card-mode&grouping=category
https://landscape.cncf.io/category=runtime&format=card-mode&grouping=category
https://landscape.cncf.io/category=cloud-native-storage&format=card-mode&grouping=category
https://landscape.cncf.io/category=container-runtime&format=card-mode&grouping=category
https://landscape.cncf.io/category=cloud-native-network&format=card-mode&grouping=category


Challenges

Patterns for building cloud-native apps

13 / 239



Cloud-Native vs. Traditional Architectures

Stateful vs. Stateless

State stored with the compute instance
Load balancers using sticky sessions
What happens on reboot or crash 💥

Service orchestration vs. Service choreography

Multiple services orchestrated to work as one, using sync communication
Choreography = uses eventing system

Dealing with failures

Minimize failures vs. expect and deal with them

14 / 239



CAP Theorem

15 / 239



Consistency

High Availability

Partition Tolerance

16 / 239



17 / 239



18 / 239



Consistency
Every node in the system provides the most recent statemost recent statemost recent statemost recent statemost recent state and nodes nevernevernevernevernever return an 

outdated stateoutdated stateoutdated stateoutdated stateoutdated state

19 / 239



20 / 239



Availability
System is available, even though not all nodes are available

21 / 239



22 / 239



Partition tolerance
System is up and running, even though connections between nodes are severed

23 / 239



You can only have 22222 of the 3 properties

24 / 239



Partition Tolerant + Available

25 / 239



Partition Tolerant + Consistent

26 / 239



Consistent + Available

27 / 239



Consistent + Available

28 / 239



CAP Theorem

Make compromises
Partitions will always exist
Optimize for Consistency or Availability

29 / 239



Fallacies of Distributed Systems

30 / 239



8 Fallacies of Distributed Systems

1. Network is reliable
2. Latency is zero
3. In�nite bandwidth
4. Network is secure
5. Topology does not change
6. There is one administrator
7. Transport cost is zero
8. Network is homogeneous

31 / 239



Network is reliable

32 / 239



Latency* is zero

*how much time goes by until data is received
33 / 239



In�nite bandwidth*

*maximum throughput
34 / 239



Network is secure

35 / 239



Topology does not change

36 / 239



There is one administrator

37 / 239



Transport cost is zero

38 / 239



Network is homogeneous*

*of the same or a same kind
39 / 239



The Twelve-Factor App

40 / 239



The Twelve-Factor App

Introduced by engineers at Heroku
Derived from best practices for app development in the cloud
Cloud deveopment evolved since, but principles still apply

https://www.12factor.net/
41 / 239

https://www.12factor.net/


CODEBASE
One codebase tracked in revision control, many deploys

42 / 239



DEPENDENCIES
Explicitly declare and isolate dependencies

43 / 239



CONFIGURATION
Store con�guration in the environment

44 / 239



BACKING SERVICES
Treat backing services as attached resources

45 / 239



BUILD, RELEASE, RUN
Strictly separate build and run stages

46 / 239



PROCESSES
Execute the app in one or more stateless processes

47 / 239



PORT BINDING
Export services via port binding

48 / 239



CONCURRENCY
Scale out via the process model

49 / 239



DISPOSABILITY
Maximize robustness with fast startup and graceful shutdown

50 / 239



DEV/PROD PARITY
Keep development, staging, and production as similar as possible

or use one environment...
51 / 239



LOGS
Treat logs as event streams

52 / 239



ADMIN PROCESSES
Run admin and management tasks as one-o� processes

53 / 239



Cloud-Native Building Blocks

54 / 239



Microservices vs. Containers vs. Functions

Microservices = architectural style

Functions & Containers = technologies serving a particular purpose

Understand how to best use functions & containersfunctions & containersfunctions & containersfunctions & containersfunctions & containers, together with eventing/messagingeventing/messagingeventing/messagingeventing/messagingeventing/messaging
technologies to design, develop and operate cloud-native microservices-based applications

55 / 239



Microservices

Service-oriented architecture
Loosely coupled services
Organized around business capability

56 / 239



https://www.appcentrica.com/the-rise-of-microservices/
57 / 239

https://www.appcentrica.com/the-rise-of-microservices/


https://twitter.com/JackKleeman/status/1190354757308862468
58 / 239

https://twitter.com/JackKleeman/status/1190354757308862468


Microservices

Smaller code bases
Managed by independent teams
Independently deployable
Single, well-de�ned task
Communication through APIs
Own tests, builds, data, deployments

59 / 239



Bene�ts

Fast(er) veri�cation, deployment, and releases
Easier to deliver new value
Use the best tools/frameworks/languages for the job
Move quicker, faster ramp up time, focus on smaller piece
One rotten apple won't "poison" other apples
Able to scale services at di�erent rates
Easier to measure and observe individual services, speci�c functionality

60 / 239



Challenges

Complexity - fallacies of distributed systems
Decentralized data makes transactions di�cult - need to use di�erent approaches to data
management
Performance - network adds overhead
Lack of tools for development and testing
Versioning, backward and forward compatibility
Inconsistent naming, types, values, etc. when logging and monitoring
Service dependency management
Service availability

61 / 239



Serverless Computing

62 / 239



Serverless Computing

Functions as a Service (FaaS)

Run in stateless, event-triggered, ephemeral containers
Code is running without managing servers or long-lived server apps

Backend as a Service (BaaS)

Used by single-page web apps, mobile apps
Uses 3rd party cloud-hosted services
Highly scalable

63 / 239



Serverless Computing

Serverless application

Scale and infrastructure managed by the cloud provider
Auto-scaling is based on the load
Event-driven programming model
Pay per execution (CPU time consumed)
Highly available

64 / 239



Containers

"Docker containers"
Linux containers (LXC)

Namespaces and control groups
Slice up the OS, so it can run securely multiple applications

Namespaces: allows OS to be sliced up and create isolated workspaces
Control groups: gives �ne-grained control over resource utilization

65 / 239



66 / 239



Functions (FaaS)

Function = unit of work
Triggered by events, emitted by other functions or services
Developers can focus on code, no need to worry about infrastructure
Use for short-lived, independent tasks

Functions as a Service (FaaS)

AWS Lambda, Azure functions, Google Cloud Functions, Oracle Functions

67 / 239



Functions (FaaS) vs. Containers

Functions (FaaS)

Does one thing
Just code
Respond to one kind of event
Scales down to 0

Containers

Does more than one thing
Declared with e.g. Docker�le
Can respond to more than one kind of event
Long running

68 / 239



Function Scenarios

Parallel execution scenarios

Functions don't need to communicate with another functions
Generating things, updating records, map-reduce functions, batch processing

IoT

For orchestration tasks: message → IoT hub → function

Full applications

Azure Durable Functions
AWS step functions

69 / 239



Considerations for Using Functions

Limited lifetime of a function
Not suited for long-running tasks

No usage of specialized hardware
Stateless and not directly network addressable
Local development/debugging
Economics

70 / 239



71 / 239



What is Docker?
Docker Engine (daemon) + CLI

72 / 239



Docker�le

FROM ubuntu:18.04
WORKDIR /app
COPY hello.sh /app
RUN chmod +x hello.sh
RUN apt-get update
RUN apt-get install curl -y
CMD ["./hello.sh"]

73 / 239



Docker image

Collection of layers from Dockerfile (one layer per command)
Layers are stacked on top of each other
Each layer is a delta from the layer before it
All layers are read-only

74 / 239



Docker image

75 / 239



Image names

Image = repository + image name + tag

mycompany/hello-world:1.0.1

All images get a default tag called latest
Tag = version or variant of an image

76 / 239



Docker Registry

Place to store your Docker images
Public and private repositories
Docker Hub (https://hub.docker.com)
Every cloud provider has its own

You can also store images locally, on your Docker host

77 / 239

https://hub.docker.com/


78 / 239



79 / 239



Exercises - Docker
https://github.com/peterj/velocity-berlin-2019

80 / 239

https://github.com/peterj/velocity-berlin-2019


81 / 239



Container Orchestration

Provision and deploy containers onto nodes
Resource management/scheduling containers
Health monitoring
Scaling
Connect to networking
Internal load balancing

82 / 239



Kubernetes Overview

Most popular choice for cluster management and scheduling container-centric workloads
Open source project for running and managing containers

De�nitions

Portable, extensible, open-source platform for managing containerized workloads and
services

Container-orchestration system for automating application deployment, scaling, and
management

https://kubernetes.io
83 / 239

https://kubernetes.io/


Kubernetes Architecture

84 / 239



85 / 239



86 / 239



Kubernetes Building Blocks (1/2)

Pods

Collection of containers that share storage, network, volumes
All containers scaled together as a unit
Unique IP

ReplicaSets

Controller for pods
Allows scaling pods (up and down)

87 / 239



Kubernetes Building Blocks (2/2)

Deployments

Manages updates, does controlled roll-out

Services

De�nes a logical set of pods and endpoint to access them
Manages a list of endpoints (pod IPs)

88 / 239



89 / 239



Con�guration and Secret Management

Store con�guration in the environment
Design your services so you can easily add/remove con�g settings
Come up with a con�guration schema for all your services

Simpli�es testing
Use �les if number of settings is too big

./myservice --arg1 --arg2 --arg3 ...

./myservice config.json
Kubernetes: ConfigMap

90 / 239



Con�guration and Secret Management

Secret = anything with sensitive info
passwords, API keys, certi�cates

Kubernetes: Secret
Consider secret management solutions (*HashiCorp Vault, Microsoft Key Vault)

https://learn.hashicorp.com/vault

https://azure.microsoft.com/en-us/services/key-vault/
91 / 239

https://learn.hashicorp.com/vault
https://azure.microsoft.com/en-us/services/key-vault/


Con�guration and Secret Management

Kubernetes: *Helm
Manage, install, upgrade a collection of templatized YAML �les as a single unit
Uses values.yaml for per-environment deployments

https://helm.sh
92 / 239

https://helm.sh/


Exercises - Kubernetes
https://github.com/peterj/velocity-berlin-2019

93 / 239

https://github.com/peterj/velocity-berlin-2019


Designing Cloud-Native Applications

94 / 239



Approach

Five key areas

Operational excellence
Security
Reliability and availability
Scalability and cost

95 / 239



Operational Excellence (1/2)

Automate everything (enviroments, deployments)

Infrastructure as Code (IaC)
Track changes to your environment
Minimize errors during provisioning and deployment
Terraform, Azure Resource Manager, AWS CloudFormation

Monitor everything

Learn about your application and environment and how it's being used
Consistent monitoring across the stack

96 / 239



Operational Excellence (2/2)

Document everything

OpenAPI spec
Automatically generate documentation

Design for failure

Failures will happen
Testing for failures

Make incremental (and reversible) changes

97 / 239



Security

*9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals are troubled by cloud security issues (esp. data loss
& breaches)

98 / 239



Security

*9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals are troubled by cloud security issues (esp. data loss
& breaches)

However...

99 / 239



Security

*9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals are troubled by cloud security issues (esp. data loss
& breaches)

However...

Cloud environments are safersafersafersafersafer than most on-premises environments

100 / 239



Security

*9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals are troubled by cloud security issues (esp. data loss
& breaches)

However...

Cloud environments are safersafersafersafersafer than most on-premises environments

BUT

101 / 239



Security

*9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals9 out of 10 cybersecurity professionals are troubled by cloud security issues (esp. data loss
& breaches)

However...

Cloud environments are safersafersafersafersafer than most on-premises environments

BUT

That doesn't mean you can ignore the security

*https://pages.cloudpassage.com/rs/857-FXQ-213/images/2018-Cloud-Security-Report%20%281%29.pdf
102 / 239

https://pages.cloudpassage.com/rs/857-FXQ-213/images/2018-Cloud-Security-Report%20%281%29.pdf


103 / 239



Defense-in-depth approach (1/2)

Source code

Secure (private) repository (track and audit access)
Vulnerability checks as part of the continuous integration

Container image

Image contains the bare-minimum needed

Container registry

Use private registry (track and audit access)
Image vulnerability scanning (e.g. Twistlock)

104 / 239



Defense-in-depth approach (2/2)

Pods

Images pulled from approved registries only
Use pod security policies to control volumes, priviledged containers, host ports,
networking, ...

Cluster/Orchestrator

Secure access to the cluster
Enable RBAC (Role-based access control)
Enable audit logs

105 / 239



Reliability and availability

Reliability: App still works in an acceptable wayacceptable wayacceptable wayacceptable wayacceptable way, even in the presence of failures
Can recover from failures
Retries, timeouts, circuit breakers
Testing is a must
Availability: App is available for a certain amount of time

106 / 239



Scalability and cost

How to scale in a cost-e�cient way?
More nodes in the cluster?

Horizontal node autoscalers (can be slow)
Burst into container as a service?

Experiment during development to �nd a better solution

107 / 239



API Gateway Pattern

108 / 239



API Gateway Pattern

Single entry point
Handles incoming requests:

Routing
Aggregating
O�oading

Use cases:

SSL termination/authentication
Caching
Rate limiting, retry policies, circuit breakers
Compression

109 / 239



110 / 239



111 / 239



112 / 239



API Gateways

Reverse proxy server (Nginx, HAProxy, Envoy)

Support load balancing, SSL and L7 routing
High performance, extendable

Managed service/other API gateways

Azure Application Gateway
AWS API Gateway
Apigee
Gloo
Kong
Ambassador ...

If using service mesh, you can use ingress/egress controllers
113 / 239



API Design and Versioning

114 / 239



API Design and Versioning

API is the communication interface between services
Properly document and version your APIs
Use standard protocols
Transparent API evolution

115 / 239



API Design and Versioning

The knot ($ for clients)

Clients tied to single version of the API
When API changes, all consumers need to upgrade

Point-to-point ($ for maintainers)

Keep all API versions running
Clients migrate when they want to

Compatible versioning ($, but e�cient)

All clients talk to the same API version
New versions are backward compatible - deprecate old versions

https://web.archive.org/web/20180202134605/https://www.ebpml.org/blog2/index.php/2013/11/25/understanding-the-costs-of-versioning
116 / 239

https://web.archive.org/web/20180202134605/https://www.ebpml.org/blog2/index.php/2013/11/25/understanding-the-costs-of-versioning


117 / 239



118 / 239



Compatible versioning wins

119 / 239



API Design and Versioning

No speci�c versioning with REST
No clear/best approach

Ideas

No versioning: api/users/123
Global/URI versioning: /api/v1/users/123, /api/v2/users/123
Query string versioning: /api/users/123?version=3
Header based: add a header e.g. api-version: 3
Mime-based approach: Accept: application/vnd.example.users.v2+json

120 / 239



API change management is what matters

121 / 239



API Design and Versioning

Compatible versioning strategy

APIs are backward compatible, no need to maintain di�erent API versions
Don't version resources, relations between them or the API itself
Version message formats and API documentation
Breaking changes: create new resource or use content negotiation

122 / 239



Backward Compatibility

New service version that supports features of an older version

Provide sensible defaults
Never rename existing �elds or remove them
Never make optional things required
Mark old API endpoints as obsolete if not used anymore
Test the combination of new/existing service version by passing old messages

123 / 239



Forward compatibility

Service can accept and gracefully handle requests for a later version of itself

Ignore any additional �elds
Don't throw errors

124 / 239



Exercises - APIs
https://github.com/peterj/velocity-berlin-2019

125 / 239

https://github.com/peterj/velocity-berlin-2019


Building Cloud-Native Applications

Slides: http://bit.ly/buildcnapps
126 / 239

http://bit.ly/buildcnapps


Agenda - Day 2

Workshop runs from 9:00 AM to 5:00 PM

30 min co�ee breaks (10:30AM and 1:30PM)
1h lunch break (12:30PM)

Multiple sections - theory + exercises

Service communcation
Developing, testing, and operating cloud-native apps
Service mesh

127 / 239



Service Communication

128 / 239



Smart endpoints and dumb pipes

Basic, async communication over complex integration platform

129 / 239



Service Communication

External communication (North-South tra�c)

Communication from/to external services

Internal communication (East-West tra�c)

Service-to-service communication (e.g. within a cluster)

130 / 239



Synchronous and asynchronous

131 / 239



Synchronous and asynchronous

One receiver and multiple receivers

132 / 239



Integrating services

Minimize the communication between internal services
Try not to depend on sync communication
Use async between services (propagate data asynchronously)
Orchestration vs. choreography

133 / 239



134 / 239



135 / 239



Protocols (1/2)

HTTP

Textual protocol
Most popular, not the most performant

HTTP/2

Binary protocol
Designed for low latency
More e�cient data transfer on the wire

136 / 239



Protocols (2/2)

WebSockets

Persistent connection between client/server
Based on HTTP
Low-latency, for transferring large volumes of data

gRPC

Binary format, small payloads
Uses HTTP/2 as transport protocol
Uses protocol bu�ers - de�ne & serialize structured data into binary format

137 / 239



Messaging Protocols

Message Queue Telemetry Transport (MQTT)

Simple and lightweight binary protocol
Designed for low-bandwidth/high-latency environments (e.g. dial-up lines, embedded
systems)
Focuses on Pub/Sub messaging, o�ers delivery guarantees

Advanced Message Queuing Protocol (AMQP)

Binary protocol with rich set of features
Reliable queuing, topic-base pub/sub, routing, security, transactions

Battle-tested and proven to be reliable

both use WebSockets over TCP
138 / 239



139 / 239



140 / 239



141 / 239



Publisher/Subscriber - Considerations

Message order is not guaranteed (default)
Design for idempotent operations

If ordering is needed:
Use messaging systems ordering functionality
Priority queue pattern

Use poison message queue (for errors/crashes)

142 / 239



Service Communication - Idempotency (1/2)

Run an operation multiple times, without changingwithout changingwithout changingwithout changingwithout changing the result

Messages can be received and processed more than once
Retry policies, failures etc.

Two approaches:

Exactly-once approach is hard
Use at-least-once approach

143 / 239



Service Communication - Idempotency (2/2)

Natural idemopotency = no need to do anything special

Not naturally idempotent:

Add unique identi�er to the message
Service checks if the message was processed or not

144 / 239



🙀

What if you can't enforce idempotency?

145 / 239



146 / 239



147 / 239



Service Communication - Serialization

JSON

Readable, self-contained
Large memory footprint
Expensive serialization/deserialization with a lot of data

Protobuf

Binary format - needs a generator
Schema de�ned in .proto �les

148 / 239



Exercises - Communication
https://github.com/peterj/velocity-berlin-2019

149 / 239

https://github.com/peterj/velocity-berlin-2019


Data in Cloud-Native Applications

150 / 239



Data in Cloud-Native Applications

Cost of storing data has decreased
Cheaper to keep vast amounts of data (2¢/GB/month)

Managed/serverless* data services lowered the operational overhead of DB systems
Easier to spread data across di�erent storage types
Decentralization data is encouraged, each service has its own datastore

*usage-based billing (data stored and processed)
151 / 239



Data in Cloud-Native Applications

Managed services to store, process, and analyze data
Use polyglot persistence, data partitioning, and caching
Embrace eventual consistency (use strong consistency when necessary)
Deal with data distributed across multiple datastores

Focus on building your applications, not provisioning/managing data systems

152 / 239



Data Storage Systems

Objects, �les, and disks
Databases

Key/value store
Document
Relational
Graph
Column-family
Time-series
Search

Streams and queues
Blockchain

153 / 239



Data Storage Systems - Objects, �les, and disks

Object/blob storage

Use it with �les, cloud provider API support needed

File storage

Network Attached Storage (NAS) support is needed
Services needd shared access to �les

Disk/Block storage

Services that require presistent local storage disks

154 / 239



Data Storage Systems - Databases (1/3)

Key/Value

Hash table, stores a value under a unique key
Values can be retried using the key, or part of the key
Performance of reads/writes depends on a good key selection
Inexpensive and very scalable

Document

Stores a document (value) by a primary key
Document (value) needs to conform to de�ned structure
Documents map nicely to objects in programming languages
Schemas are not enforced (schema on read)

Apps consuming the data need to know how to work with the data returned

155 / 239



Data Storage Systems - Databases (2/3)

Relational

Most popular and commonly used, very mature
Data organized into tables (rows and columns)
Relationships between tables can be enforced by the database system
Strict schema (schema on write)
Good with data that contains a lot of relationships

many-to-many relationships are hard with document DBs, but simple in relational

Graph

Data stored in edges and nodes
Works well for analyzing relationships between entities
Graph data can be stored in other DBs, however traversals are complex

156 / 239



Data Storage Systems - Databases (3/3)

Column-family

Data in rows and columns (tabular data with rows and columns)
Columns divided into groups = column families

Set of logically related columns, retrieved and manipulated as a unit

Time-series

Optimized for time, storing values based on time
Support for very high number of small writes
Good for telemetry data, IoT sensors, app/system counters

Search

Used to search information in other datastores/services
Indexes large volumes of data



Data Storage Systems - Blockchain

Records stored in an immutable* way
Records grouped in a block → added to the chain
Blocks are chained using hashing, to ensure they are not tampered with

*unable to be changed
158 / 239



Data Storage Systems - Selecting a Datastore

Functional Requirements

What type of data do you need to store?
How will the data be consumed and written?
How large are the items placed in the datastore?
How much storage capacity do you need? Do you anticipate partitioning the data?
Do you need support for complex relationships?
Strong consistency or eventual consistency?
Do you need a �xed or strongly enforced schema?
Do you need full-text search, indexing?
Do you plan to �re events on data changes?

159 / 239



Data Storage Systems - Selecting a Datastore

Non-functional Requirements

What experience does your team have?
Do you need support?
What are your performance/reliability requirements?
Do you need backup/restore features?
How about data replication across multiple regions/zones?
On-premise or multiple cloud providers?

160 / 239



Data Storage Systems - Selecting a Datastore

Management and Cost

Is there a managed data storage available?
Any restrictions on licensing types?
Any preferences on proprietary vs. OSS license?
What is the overall cost of using the service?

161 / 239



Data Storage Systems - Selecting a Datastore

357 di�erent databases*
Major driving factor: skillset of the team
Signi�cant overhead for managing data systems

Deploying simple DB is easy, but consider patching, upgrades, perf tuning, backups, ...
Tooling availability

*https://db-engines.com/en/ranking
162 / 239

https://db-engines.com/en/ranking


Data in Multiple Datastores

Introduces data management challenges
Traditional transactions not possible
Distributed transactions adversly a�ect the performance & scale

Challenges

Consistency across datastores
Analysis of data
Backup and restore

163 / 239



Change Data Capture

Stream of data change events (change log)
Exposed through API → trigger functions on events

164 / 239



Change Data Capture - Use cases

Noti�cations
Materialized views
Cache invalidation
Auditing
Search
Analytics and change analytics
Archive
Legacy systems

165 / 239



Transactions

Scenario

User uploads a picture �le with description and name. Application needs to write the �le to
object storage and data to a document database.

Problem

File gets written, but writing to the database fails. We end up with orphaned �le.

Solution

Treat both writes as a transaction - one fails, both should fail.

166 / 239



Distributed Transactions

Transaction that spans over multiple databases and services

How to keep the transaction atomic*?

One step fails, how do we roll back?

How to handle concurrent requests?

Data is being persisted and read at the same time - do you return old data or new?

*atomicity of transaction=all steps completed, or no steps completed
167 / 239



Distributed Transactions

Two-Phase Commit

Pros

prepare and commit phase
Transaction coordinator
Guarantees an atomic transaction
Read-write isolation - changes on records not available until coordinatior commits them

Cons

Slow, dependent on the transaction coordinator
Database row locking → deadlocks
Doesn't scale
Not recommended for microservices

168 / 239



Distributed Transactions

Eventual Consistency and Compensation / Saga

Each service publishes an event when data is updated. Other services subscribe to events.
When event is received, service updates its data

Pros

Each microservice focuses on its own transaction
No DB lock required
Highly scalable under heavy load

Cons

No read isolation
Hard to debug and maintain if a lot of services are involved

169 / 239



Scaling Data

No logic in DBs (stored procedures/triggers)
Makes it harder to scale

Replicate:
Cache, materialized view, read-replica

Partition:
Horizontally (sharding)
Vertically based on the model
Functionally based on features

170 / 239



Content Delivery Network (CDN)

A group of geographically distributed data centers

Used for caching static content closer to consumers
Reduces the latency between the consumer and the data

Use cases

Improve website loading times
Speed up downloads & updates
Increase content availability/redundancy
Speed up �le uploads (e.g. Amazon CloudFront)

171 / 239



172 / 239



Content Delivery Network (CDN)

Con�gured with an expiration date-time (TTL)
Upon expiry, data is reloaded from origin

Manual expiry = add hash/version to the content (e.g. /image1.jpg?v=1)
Explicitly expire the cache through API or management console

173 / 239



Databases on Kubernetes

Running a stateful workload is much di�erent than stateless services

Use stateful sets and persistent volumes
Use operators* instead - can simplify deployment and management of data systems

*https://www.operatorhub.io
174 / 239

https://www.operatorhub.io/


Databases on Kubernetes

Durable volumes needed
Di�erent lifecycle as containers

Mount into pods:
Persistent volumes (PV)
Persistent volume claims (PVC)
Storage classes (underlying storage providers)

175 / 239



176 / 239



Databases on Kubernetes

Designed to address problems of running stateful services in Kubernetes

Manages the deployment and scaling of pods
Guarantees the order and uniqueness of pods
Each pod has a persistent identi�er (e.g. mongo-0, mongo-1 ...)
PV and PVC for each pod

177 / 239



Exercises - Working with Data
https://github.com/peterj/velocity-berlin-2019

178 / 239

https://github.com/peterj/velocity-berlin-2019


Developing Cloud-Native Applications

179 / 239



Development Environments and Tools

Traditionally set up on local development machines/VMs
Enables you to quickly iterate, test, debug changes
Microservices & serverless makes this di�cult

Hard/impossible to run entire application on local machine

180 / 239



Development Environments and Tools

Consider the following

Does the code need to run in the cluster?
Are you running your cluster locally or in the cloud?
Where do you make/commit changes - locally or in the cloud?
Any dependencies that need to run in the cloud?
Team distribution - would you bene�t from a collaborative dev environment?

181 / 239



182 / 239



Development Tools (1/2)

Docker Compose

De�ne and run multiple containers locally
Easily bring up more complex development environments

Minikube

Run a single-node Kubernetes cluster in a VM locally on your machine
Good for experimenting

Docker for Mac/Windows

Similar to Minikube

Kubernetes can be resource heavy, di�erent ways to access LoadBalancer type services
183 / 239



Development Tools (2/3)

KSync

Replicates local �les to containers running in a remote cluster
Allows quick iteration without re-building, push and updating the containers

Ska�old

Deploy code changes to a local/remote cluster
Automatically builds an image and pushes it to a cluster on code changes

184 / 239



Development Tools (3/3)

Telepresence

Wires local containers into a remote cluster
Makes your local machine "part of the cluster"

Azure DevSpaces

Develop and run containers services in isolation on AKS
Allows teams to share a cluster

185 / 239



Testing Cloud-Native Applications

186 / 239



Testing

Can't survive with manual tests
Reliable, repeatable and automated tests are essential
Use test doubles (mocks, fakes and stubs) for dependencies

MOCK = object use to test the calls it receives
FAKE = object with working implementation (di�erent from a real implementation)
STUB = object that returns prepopulated data

187 / 239



Test Automation Pyramid

188 / 239



Testing

Unit tests

Fast to execute
First line of defense

Service Tests / Component-level tests

Test interactions between services/components

User interface tests

End-to-end tests
(Relatively) slow to execute and costly to write/maintain
Cruical for usability/accessibility

189 / 239



Testing

Acceptance tests
Smoke tests
Integration tests
Security

Penetration tests
Fuzz tests

Performance tests
Load tests

Usability tests
Chaos tests
Canary tests
A/B tests
...

190 / 239



Testing

When and how often to execute tests?

Unit: during development, before every merge/check-in
Service/Component: before/after every merge/check-in
Integration: before deployments
Canary: run continuously*
Security: automated, part of integration/canary tests if possible

UI: on UI changes, consider automating if UI heavy
Performance: get baselines manually, consider automating for repeatable numbers
A/B: as needed, make sure you have clear goals and metrics de�ned
Chaos: as needed, for operational readiness, to catch potential prod issues

* can be costly to maintain
191 / 239



Testing Environments

Dev → Test → Staging → Production

Mimic production environment (as closely as possible)
How to keep environments in sync?
What's the cost for all this?
Are you running staging in all regions, just like production

192 / 239



How about production only?*

* always consult your co-workers, management, teams before beginning this exercise program. This information is not intended to be
taken lightly and without any considerations. Consult with your team to design an appropriate testing environment. If you experience any
issues or di�culties...

193 / 239



Operating Cloud-Native Applications

194 / 239



CI/CD

195 / 239



CI - Source Code Control

Repository where your code lives
Source of truth for your code/con�guration
Branching strategies
Mono or multi-repo

196 / 239



Branching Strategies

Trunk-based Development

Everyone works on a single branch - trunk (master)
No need for long-lived feature branches with smaller teams
Release from the trunk - use '�x forward' strategy

Short-lived release branches that get deleted
As soon as commit/branch is merged to master, you release

197 / 239



Branching Strategies

Git Flow Strategy

Designed around releases
Start with master and develop branch
Use feature, release, hot�x branches (o� develop)

Helps with feature/release/hot�x tracking
Once release is complete:

merge to develop
merge to master + tag with a version

198 / 239



CI - Source Code Control

Mono-repo vs. Multi-repo

You will be solving similar problems, regardless where your code is

Depends on the number of services
Decide how to do dependency management, isolate service
How about build breaks?
More complicated to do independent deploys with mono-repo
Single tag/version for all services?
Hard to cleanly de�ne ownership

199 / 239



CI - Build and Test Stage

Build the code
Run the tests:

Unit/Component
Linters
Static analysis
...

Version/tag the generated artifact
Use Git commit checksum hash + build number (ed3ee93-0.1.0)

Result: built and versioned artifactResult: built and versioned artifactResult: built and versioned artifactResult: built and versioned artifactResult: built and versioned artifact*

*Docker image or serverless function package
200 / 239



CD - Deploy Stage

No source code beyond this point
Images, packaged artifacts, con�g/deploy templates

Automatically triggered by successful CI
Prepare everything needed and place the artifact into staging
Run tests (canary) + monitor the services

201 / 239



CD - Release Stage

You need enough data from previous stages to feel comfortable releasing the service into
production

Production tra�c → new service

Swap stage & production deployment slots
Redirect a % of the production tra�c to deployed services

Monitor and observe released versions

Integrate with alarm system

Rollback to previous version OR keep increasing to 100% (�x-forward)

Usually done manually
Could be automated

202 / 239



CD - Post-Release Stage

Part of testing in production/operating the application

Continous service monitoring
Investigating incidents/errors

Alerting/monitoring systems
Doing chaos testing

203 / 239



204 / 239



Monitoring and Observability

Monitoring is used to assess and report on the overall health of a system or services using
metrics

Error rate
Rate of failing requests (e.g. HTTP 500)

Incoming request rate
How much tra�c is coming into the system (HTTP requests/second)

Latency
Time it took to process a request

Utilization
Usage of di�erent pieces of the system (e.g. CPU, memory, disk usage)

205 / 239



Monitoring and Observability

Using monitoring you should be able to tell which part of your system is broken and why is it
broken

Come up with the set of metrics before your �rst release

De�ne:

when to continue the release (5 minutes, 1 hour, 2 hours, ...)
when to rollback (more than 1% change in negative direction)

Tools:

Prometheus (collecting metrics from services)
Grafana (visualizing metrics)

206 / 239



Monitoring and Observability

Observability captures everything that monitoring doesn't using tracestracestracestracestraces

Granular details and insights into services
Helps you debug services more e�ciently

Monitoring tells you something is wrongsomething is wrongsomething is wrongsomething is wrongsomething is wrong, observability helps you dig deeper and investigatehelps you dig deeper and investigatehelps you dig deeper and investigatehelps you dig deeper and investigatehelps you dig deeper and investigate

Tools:

Jaeger
Zipkin

207 / 239



Exercises - Development, Testing, and
Operations

https://github.com/peterj/velocity-berlin-2019

208 / 239

https://github.com/peterj/velocity-berlin-2019


Service Mesh

209 / 239



Dedicated infrastructure layer for 
managing service-to-service communicationmanaging service-to-service communicationmanaging service-to-service communicationmanaging service-to-service communicationmanaging service-to-service communication to make it

manageable, visible, and controlled

210 / 239



211 / 239



Service Mesh - Architecture

Data plane (proxies)

Run next to each service instance (or one per host)
Intercept all incoming/outgoing requests (iptables)
Con�gure on how to handle tra�c
Emits metric

Control plane

Validates rules
Translates high-level rules to proxy con�guration
Updates the proxies/con�guration
Collects metrics from proxies

212 / 239



Service Mesh - Features

Tra�c Management 🚦

Percentage based tra�c routing: X% to v1, Y% to v2
Request based routing: headers, URIs, scheme, method, ...

Resiliency Features 🌊

Retries
Timeouts
Circuit breakers

213 / 239



Service Mesh - Features

Security

Secure communication between services (mutual TLS)
Identity + cert for each service
Cert lifecycle managed by the proxy
Access control (namespace, service, method level)

Tracing and Monitoring

Proxies collect metrics automatically (requests, durations, sizes, response codes,...)
Visibility into service communication without code changes
Tools: Grafana, Jaeger, Kiali

214 / 239



215 / 239



216 / 239



217 / 239



218 / 239



Service Mesh - Istio

Tra�c Management Resources

Gateway
VirtualService
DestinationRule
ServiceEntry
Sidecar

219 / 239



Service Mesh - Virtual Service

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: service-b
spec:
  hosts:
    - service-b.default.svc.cluster.local
  http:
    - route:
        - destination:
             host: service-b
             subset: v1
           weight: 98
        - destination:
            host: service-b
            subset: v2
          weight: 2

220 / 239



Service Mesh - Destination Rule

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: service-b
spec:
  host: service-b.default.svc.cluster.local
   subsets:
    - name: v1
      labels:
        version: v1
    - name: v2
      labels:
        version: v2
   trafficPolicy:
    tls:
      mode: ISTIO_MUTUAL

221 / 239



222 / 239



Service Mesh - Service Entry

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
  name: movie-db
spec:
  hosts:
     - api.themoviedb.org
  ports:
     - number: 443
      name: https
      protocol: HTTPS
   resolution: DNS
   location: MESH_EXTERNAL

223 / 239



Service Mesh - Gateway

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: gateway
spec:
  selector:
     istio: ingressgateway
  servers:
    - port:
         number: 80
        name: http
        protocol: HTTP
    hosts:
     - "hello.example.com"

224 / 239



Service Mesh - Sidecar

apiVersion: networking.istio.io/v1alpha3
kind: Sidecar
metadata:
  name: default
  namespace: prod-us-west-1
spec:
  egress:
    - hosts:
        - 'prod-us-west-1/*'
        - 'prod-apis/*'
        - 'istio-system/*'

225 / 239



Service Mesh - Tra�c Management

De�ne subsets in DestinationRule
De�ne route rules in VirtualService
De�ne one or more destinations with weights

226 / 239



Resiliency
Ability to recover from failuresrecover from failuresrecover from failuresrecover from failuresrecover from failures and continue to functioncontinue to functioncontinue to functioncontinue to functioncontinue to function

227 / 239



Return the service to a fully functioning statefully functioning statefully functioning statefully functioning statefully functioning state after failure

228 / 239



Resiliency

High availability

Healthy
No signi�cant downtime
Responsive
Meeting SLAs

Disaster recovery

Design can't handle the impact of failures
Data backup & archiving

229 / 239



Resiliency Strategies

Load Balancing
Timeouts and retries
Circuit breakers and bulkhead pattern
Data replication
Graceful degradation
Rate limiting

230 / 239



Service Mesh - Timeouts

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
    name: service-b
spec:
    hosts:
    - service-b.default.svc.cluster.local
    http:
    - route:
        - destination:
            host: service-b
            subset: v1
       timeout: 5s

231 / 239



Service Mesh - Retries

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: service-b
spec:
  hosts:
    - service-b.default.svc.cluster.local
  http:
    - route:
        - destination:
            host: service-b
            subset: v1
       retries:
         attempts: 3
         perTryTimeout: 3s

232 / 239



Service Mesh - Circuit Breakers

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: service-b
spec:
  host: service-b.default.svc.cluster.local
   trafficPolicy:
     tcp:
       maxConnections: 1
     http:
       http1MaxPendingRequests: 1
       maxRequestsPerConnection: 1
     outlierDetection:
       consecutiveErrors: 1
       interval: 1s
       baseEjectionTime: 3m
       maxEjectionPercent: 100

233 / 239



Service Mesh - Delays

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: service-b
spec:
  hosts:
    - service-b.default.svc.cluster.local
  http:
    - route:
        - destination:
            host: service-b
            subset: v1
       fault:
         delay:
             percentage: 50
         fixedDelay: 2s

234 / 239



Service Mesh - Aborts

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: service-b
spec:
  hosts:
    - service-b.default.svc.cluster.local
  http:
    - route:
        - destination:
            host: service-b
            subset: v1
       fault:
         abort:
           percentage: 50
         httpStatus: 404

235 / 239



Exercises - Service Mesh
https://github.com/peterj/velocity-berlin-2019

236 / 239

https://github.com/peterj/velocity-berlin-2019


Thank you

Please rate the session!

Slides: http://bit.ly/buildcnapps

Exercises: https://github.com/peterj/velocity-berlin-2019

Contact:

@pjausovec
peterj.dev

237 / 239

http://bit.ly/buildcnapps
https://github.com/peterj/velocity-berlin-2019
https://twitter.com/pjausovec
https://peterj.dev/


Table of Contents

Day 1

Introduction to Containers

Cloud-Native Building Blocks

Kubernetes

Designing Cloud-Native Apps

Day 2

Designing Cloud-Native Apps (Service Communication)

Data in Cloud-Native Applications

Developing, Testing, and Operating Cloud-Native Apps

Service Mesh

238 / 239



Slides

http://bit.ly/buildcnapps

239 / 239

http://bit.ly/buildcnapps

