Deconstructing a Monolith

Introduction

| am Peter (@pjausovec)

e Software Engineer at Oracle

e Working on "cloud-native" stuff

* Books:
o Cloud Native: Using Containers, Functions, and Data to Build Next-Gen Apps
o SharePoint Development
o VSTO For Dummies

e Courses:

o Kubernetes Course (https://startkubernetes.com)

o |stio Service Mesh Course (https://learnistio.com)

https://twitter.com/pjausovec
https://www.amazon.com/Cloud-Native-Containers-Next-Generation-Applications/dp/1492053821
https://startkubernetes.com/
https://learnistio.com/

Agenda

1. What are Monoliths and Microservices?
2. Migration Patterns
o Strangler Pattern
o Branch by Abstraction Pattern
o Parallel Run Pattern
3. Decomposing Databases
o Database View Pattern
o Database Wrapping Service Pattern
o Database-as-a-Service Pattern
o Change Data Capture
o Aggregate Exposing Monolith
o Change Data Ownership Pattern
4. Data Synchronization
5. Transactions

Monolith Challenges

e Developers getting in each others way
o changing same piece of code
o delaying deployments

e Ownership

Monolith Advantages

e Simpler/single deployment
e Simpler inner loop/development

o also monitoring and E2E testing
e Code reuse

Monolithic architecture is an option

Microservices Characteristics

* Independently deployable
e Modeled around a business domain
e Own their own data

What's the single biggest advantage of
microservices?

a) Scaling (like Netflix!)
b) Use any tech/language
c) Flexibility

d) Simpler deployment

FLEXIBILITY

Microservice Challenges

* Networking
o Distributed system, CAP theorem and all that
* |t's not server-side only - What about the UIs?
e Urge to use the latest and greatest
e Culture change

Recap

Monolithic deployment

* Monoliths can be a good choice
Avoid distributed monoliths

e Microservices offer flexibility

A lot of network

Planning a migration

Microservices are not the goal

"Would you tell me, please, which way | ought to go from here?"
"That depends a good deal on where you want to get to"
"l don't much care where"

"Then it doesn't matter which way you go" ...

Questions to ask

e What are you hoping to achieve?
e Which alternatives did you consider?
e How do you know if migration worked?

Reasons

* |mprove team autonomy
© Amazon's two-pizza team
o Spotify's product squads

Reduce time to market
e Scale and robustness

Scale the developers
e Embrace new tech

Migration Patterns

Strangler Pattern

Strangler Pattern

e Used when doing system rewrites
* Both systems coexist
e Allows for incremental changes and pausing/stopping the migration

Strangler Pattern

1. Identify the functionality
2. Move the functionality
3. Redirect the calls

IDENTIFY

MONOLITH

MOVE

Requests

>

MOVE
TO
MICROSERVICE

MONOLITH

REDIRECT

Requests

@ REDIRECT THE CALLS

MONOLITH

Requests

/customers /oxrders

CUSTOMERS

ORDERS

MONOLITH

Requests

/customers

CUSTOMERS

MONOLITH

/orders

ORDERS

Branch by Abstraction Pattern

1. Create the abstraction

2. Use the abstraction (with existing implementation)
3. Implement new service

4, Switch the implementation

5. Clean up

CREATE

USE

IMPLEMENT

NEW
SERVICE

SWITCH

NEW
SERVICE

4

CLEAN UP

NEW
SERVICE

DEMO - Branch by Abstraction

BREAK

PARALLEL RUN

NEW
SERVICE

SERVICE

SERVICE

request

- respond with 404

CONEIG |- deiay for 5s
- re-route the traffic

DEMO

Parallel Run/Mirroring with Service Mesh

/tax

MONOLITH

/tax

MONOLITH

| Tax
.| SERVICE '

/tax

MONOLITH

TAX
' SERVICE '

Decomposing Databases

Sharing a Database

* You can't decide what's shared and what's hidden
o Goes against one of the microservices characteristics
e Data control - where is the logic?

SHARED DATABASE

1. Database holds read-only/static data

2. Database-as-a-Service Interface pattern

DATABASE VIEW PATTERN

NEW

MONOLITH SERVICE

DATABASE WRAPPING

DATABASE WRAPPING

WRAPPER
SERVICE

DATABASE WRAPPING

L 1|

Database UL AR
SERVICE

Wrapper vs. View

e Not constrained to a view
e Ability to create more complex views
e API for writing
o requires changes to upstream services

DATABASE-AS-A-SERVICE

Updating the R/O database

e Change data capture
e Batch process
* Service events

MONOLITH

CREATE
NEW
REGISTRATION

SEND
NOTIFICATION

MONOLITH DB

MICROSERVICE

Change Data Capture

e Database triggers

o trigger behavior on data changes
e Transaction log pollers
e Batch delta copier

Aggregate Exposing Monolith

CUSTOMER « ORDERS
API ' SERVICE

Customer Data

MONOLITH DB

ORDERS

SERVICE

2 2

E CUSTOMER E
API

CUSTOMER
SERVICE

EEH

Customer Data

MONOLITH DB

Change Data Ownership Pattern

NEW

MONOLITH SERVICE

NEW
MONOLITH g o SERVICE

EEH

Service table

EEH

Service table

EEH

Service table

MONOLITH DB SERVICE DB SERVICE DB

Data Sychronization

Proxy

l

MONOLITH NEW

SERVICE

SERVICE DATA H SERVICE DATA

MONOLITH DB SERVICE DB

What degree of consistency we need?

1. Keep data in one place
2. Batch copy all the data
3. Sync via code

DATA IN ONE PLACE

NEW

MONOLITH SERVICE

BATCH MIGRATE

MONOLITH NEW
SERVICE

Sync via Code

1. Batch migrate the data to new database

2. Deploy the new service (sync on write, read from old)
3. Make the new database the source of truth

4. Verify and remove old DB/schema and switching logic

BATCH MIGRATE

MONOLITH

WRITE TO BOTH/READ FROM OLD

WRITE
MONOLITH >

WRITE

WRITE TO BOTH/READ FROM NEW

WRITE

» NEW
SERVICE

MONOLITH

READ

WRITE READ

SWITCH TO NEW

WRITE J NEW
MONOLITH SERVICE
_ READ

WRITE READ

Splitting Databases

ORDERS

Orders Schema

[
h-.-
-
-

CUSTOMERS

.
-l-.'.l
-

»| CUSTOMERS

ORDERS

Customers Schema

Orders Schema

CUSTOMERS DB ENGINE

ORDERS DB ENGINE

What to split first?

e Database first, code second
e Code first, database second
e Both at once

DEMO

STORE
MONOLITH

STORE DB

Id Product Name Product Price Quantity
1 Product 1 19.99 10

2 Product 2 10.99 0

3 Product 3 5.99 5

4 Product 4 19.99 10

|

STORE
Id Productlid Quantity
X 1 10
X 2 0
X 3 5
X 4 10
STORE DB INVENTORY DB {

STORE
MONOLITH

STORE DB

INVENTORY
SERVICE

INVENTORY DB

BREAK

Transactions

ACID Transaction

e Atomicity

* Consistency
* |solation

e Durability

Transactional boundary

— o
— I
Userld Status Userld Date
S PRIEE SRR DI
15432 REGISTERED 1 15432 04/06/2019 1!
Users PendingRegistrations

Transactional boundary

USERS
< =
4__—/
4
Userld Status
1234 PENDING _
15432 REGISTERED
Users
__¥ /

Transactional boundary

REGISTRATION

< S
4__.-/
v
Userld Date
L1234 02/02/2018_
15432 04/06/2019 1!
PendingRegistrations
~— P

Two-Phase Commit (2PC)

1. Can state be changed

to REGISTERED?

A 4
-------- Worker

COORDINATOR

1. Can you delete row 54327

2. Yes

A

Userld Status

1234 _ _PENDING _ _
- == 915432 REGISTERED 1
Users

A 4
-------- Worker

— oy
— I

Userld Date

1234 02/02/2018

PendingRegistrations

v

Two-Phase Commit

Pros:
e Guarantees an atomic transaction
cons:

e Slow, depends on the transaction coordinator
e Database row locking can lead to deadlocks
* Doesn't scale

Alternatives

1. Don't split the data

2. Sagas

Sagas

e Coordinate multiple state changes
* How to handle long-lived transactions?

o Break-up the LLT into sub-transactions
e Short-lived sub-transactions

Sagas - Example

Online Purchase

1. Check if in stock and reserve -> Warehouse service
2. Charge the user for the product -> Payment service
3. Send the notification -> Notification service

4, Package and send the order -> Warehouse service

Handling Failures

e Backward recovery

o Rollback
o Compensating actions

e Forward recovery

o Continue and retry

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

Compensating transaction

Online Purchase

1. Check if in stock and reserve -> Warehouse service (OK)

2. Charge the user for the product -> Payment service (OK)

3. Send the notification -> Notification service (OK)

4, Package and send the order -> Warehouse service (ERROR)

Compensating transaction - Rollback

Online Purchase Rollback
1. Check if in stock and reserve -> Warehouse service (OK)
(ROLLBACK) Remove the reservation
2. Charge the user for the product -> Payment service (OK)
(ROLLBACK) Return the money back to the user
3. Send the notification -> Notification service (OK)
(ROLLBACK) Notify use that the item is not available

4. Package and send the order -> Warehouse service (ERROR)

Implementing Sagas

e Orchestrated Sagas
o rely on centralized coordination
* Choreographed Sagas

o no centralized coordination
© more complicated tracking

ORCHESTRATOR

1. Check stock & reserve
»| Warehouse
4. Package & send T
2. Charge the user
3. Send notification Payment

I

Notification

Orchestrated Sagas

Pros:

e Whole business process centralized orchestrator
e Easier to understand

cons

* Increased coupling (orchestrator knows about everything)
* Anemic services (logic in the orchestrator)

(Order shipped)

'O

1
sends 1

receives
(Order placed)4‘ ------ Warehouse

receives °

sends : o
1
1

\ 4
(Item reserved)
A
1
1
1
receives 1 °
Payment

A 4

Notification

sends |
1
1

v

(Notification sent)

receives

\ 4

C Order placed)

{
customerId: 1234

correlationId: ABC-123
}

1 SagaView }

receives

v

(Item reserved)

receives

v

C User charged)

Saga: ABC-123

1. Order Placed
2. Item Reserved
3. User charged

Choreographed Sagas

Pros:

® | oose coupling (services react to events)
e No centralization

cons:

e Hard to know what's happening
e Hard to get the state of saga

Resources

Books:

* Monolith to Microservices by Sam Newman
* Cloud Native: Using Containers, Functions, and Data by Scholl, Swanson, and Jausovec

Blogs/Articles:

* SAGAS by Hector Garcia-Molina and Kenneth Salem
e Chris Richardson's Blog
* Martin Fowler's Blog

https://www.amazon.com/Monolith-Microservices-Evolutionary-Patterns-Transform/dp/1492047848/
https://www.amazon.com/Cloud-Native-Containers-Next-Generation-Applications/dp/1492053821/
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://microservices.io/patterns/index.html
https://martinfowler.com/architecture/

Thank you

Contact

* @pjausovec

® peterj.dev

e Slides: https://slides.peterj.dev

e Demos: https://github.com/peterj/gids-deconstructing-monoliths

https://twitter.com/pjausovec
https://peterj.dev/
https://slides.peterj.dev/
https://github.com/peterj/gids-deconstructing-monoliths

