
Deconstructing a Monolith

1 / 105



Introduction

I am Peter (@pjausovec)
Software Engineer at Oracle
Working on "cloud-native" stu�
Books:

Cloud Native: Using Containers, Functions, and Data to Build Next-Gen Apps
SharePoint Development
VSTO For Dummies

Courses:
Kubernetes Course (https://startkubernetes.com)
Istio Service Mesh Course (https://learnistio.com)

2 / 105

https://twitter.com/pjausovec
https://www.amazon.com/Cloud-Native-Containers-Next-Generation-Applications/dp/1492053821
https://startkubernetes.com/
https://learnistio.com/


Agenda

1. What are Monoliths and Microservices?
2. Migration Patterns

Strangler Pattern
Branch by Abstraction Pattern
Parallel Run Pattern

3. Decomposing Databases
Database View Pattern
Database Wrapping Service Pattern
Database-as-a-Service Pattern
Change Data Capture
Aggregate Exposing Monolith
Change Data Ownership Pattern

4. Data Synchronization
5. Transactions

3 / 105



4 / 105



5 / 105



6 / 105



7 / 105



Monolith Challenges

Developers getting in each others way
changing same piece of code
delaying deployments

Ownership

8 / 105



Monolith Advantages

Simpler/single deployment
Simpler inner loop/development

also monitoring and E2E testing
Code reuse

9 / 105



Monolithic architecture is an option

10 / 105



11 / 105



Microservices Characteristics
Independently deployable
Modeled around a business domain
Own their own data

12 / 105



What's the single biggest advantage of
microservices?

a) Scaling (like Net�ix!)

b) Use any tech/language

c) Flexibility

d) Simpler deployment

13 / 105



FLEXIBILITY

14 / 105



Microservice Challenges
Networking

Distributed system, CAP theorem and all that
It's not server-side only - What about the UIs?
Urge to use the latest and greatest
Culture change

15 / 105



Recap
Monolithic deployment
Monoliths can be a good choice
Avoid distributed monoliths
Microservices o�er �exibility
A lot of network

16 / 105



Planning a migration

17 / 105



Microservices are not the goal

18 / 105



"Would you tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to"

"I don't much care where"

"Then it doesn't matter which way you go" ...

19 / 105



Questions to ask
What are you hoping to achieve?
Which alternatives did you consider?
How do you know if migration worked?

20 / 105



Reasons
Improve team autonomy

Amazon's two-pizza team
Spotify's product squads

Reduce time to market
Scale and robustness
Scale the developers
Embrace new tech

21 / 105



Migration Patterns

22 / 105



Strangler Pattern

23 / 105



24 / 105



Strangler Pattern
Used when doing system rewrites
Both systems coexist
Allows for incremental changes and pausing/stopping the migration

25 / 105



Strangler Pattern
1. Identify the functionality
2. Move the functionality
3. Redirect the calls

26 / 105



27 / 105



28 / 105



29 / 105



30 / 105



31 / 105



Branch by Abstraction Pattern
1. Create the abstraction
2. Use the abstraction (with existing implementation)
3. Implement new service
4. Switch the implementation
5. Clean up

32 / 105



33 / 105



34 / 105



35 / 105



36 / 105



37 / 105



DEMO - Branch by Abstraction

38 / 105



BREAK

39 / 105



40 / 105



41 / 105



42 / 105



43 / 105



DEMO

Parallel Run/Mirroring with Service Mesh

44 / 105



45 / 105



46 / 105



47 / 105



Decomposing Databases

48 / 105



Sharing a Database
You can't decide what's shared and what's hidden

Goes against one of the microservices characteristics
Data control - where is the logic?

49 / 105



50 / 105



1. Database holds read-only/static data

2. Database-as-a-Service Interface pattern

51 / 105



52 / 105



53 / 105



54 / 105



55 / 105



56 / 105



Wrapper vs. View

Not constrained to a view
Ability to create more complex views
API for writing

requires changes to upstream services

57 / 105



58 / 105



Updating the R/O database

Change data capture
Batch process
Service events

59 / 105



60 / 105



Change Data Capture

Database triggers
trigger behavior on data changes

Transaction log pollers
Batch delta copier

61 / 105



Aggregate Exposing Monolith

62 / 105



63 / 105



64 / 105



Change Data Ownership Pattern

65 / 105



66 / 105



Data Sychronization

67 / 105



68 / 105



What degree of consistency we need?
1. Keep data in one place
2. Batch copy all the data
3. Sync via code

69 / 105



70 / 105



71 / 105



Sync via Code

1. Batch migrate the data to new database
2. Deploy the new service (sync on write, read from old)
3. Make the new database the source of truth
4. Verify and remove old DB/schema and switching logic

72 / 105



73 / 105



74 / 105



75 / 105



76 / 105



Splitting Databases

77 / 105



78 / 105



79 / 105



What to split �rst?
Database �rst, code second
Code �rst, database second
Both at once

80 / 105



DEMO

81 / 105



82 / 105



83 / 105



84 / 105



BREAK

85 / 105



Transactions

86 / 105



ACID Transaction

Atomicity
Consistency
Isolation
Durability

87 / 105



88 / 105



89 / 105



Two-Phase Commit (2PC)

90 / 105



Two-Phase Commit

Pros:

Guarantees an atomic transaction

Cons:

Slow, depends on the transaction coordinator
Database row locking can lead to deadlocks
Doesn't scale

91 / 105



Alternatives

1. Don't split the data

2. Sagas

92 / 105



Sagas
Coordinate multiple state changes
How to handle long-lived transactions?

Break-up the LLT into sub-transactions
Short-lived sub-transactions

93 / 105



Sagas - Example

Online Purchase

1. Check if in stock and reserve -> Warehouse service
2. Charge the user for the product -> Payment service
3. Send the noti�cation -> Noti�cation service
4. Package and send the order -> Warehouse service

94 / 105



Handling Failures

Backward recovery

Rollback
Compensating actions

Forward recovery

Continue and retry

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
95 / 105

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf


Compensating transaction

Online Purchase

1. Check if in stock and reserve -> Warehouse service (OK)
2. Charge the user for the product -> Payment service (OK)
3. Send the noti�cation -> Noti�cation service (OK)
4. Package and send the order -> Warehouse service (ERROR)

96 / 105



Compensating transaction - Rollback

Online Purchase Rollback

1. Check if in stock and reserve -> Warehouse service (OK)

(ROLLBACK) Remove the reservation

2. Charge the user for the product -> Payment service (OK)

(ROLLBACK) Return the money back to the user

3. Send the noti�cation -> Noti�cation service (OK)

(ROLLBACK) Notify use that the item is not available

4. Package and send the order -> Warehouse service (ERROR)

97 / 105



Implementing Sagas

Orchestrated Sagas

rely on centralized coordination

Choreographed Sagas

no centralized coordination
more complicated tracking

98 / 105



99 / 105



Orchestrated Sagas

Pros:

Whole business process centralized orchestrator
Easier to understand

Cons

Increased coupling (orchestrator knows about everything)
Anemic services (logic in the orchestrator)

100 / 105



101 / 105



102 / 105



Choreographed Sagas

Pros:

Loose coupling (services react to events)
No centralization

Cons:

Hard to know what's happening
Hard to get the state of saga

103 / 105



Resources
Books:

Monolith to Microservices by Sam Newman
Cloud Native: Using Containers, Functions, and Data by Scholl, Swanson, and Jausovec

Blogs/Articles:

SAGAS by Hector Garcia-Molina and Kenneth Salem
Chris Richardson's Blog
Martin Fowler's Blog

104 / 105

https://www.amazon.com/Monolith-Microservices-Evolutionary-Patterns-Transform/dp/1492047848/
https://www.amazon.com/Cloud-Native-Containers-Next-Generation-Applications/dp/1492053821/
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://microservices.io/patterns/index.html
https://martinfowler.com/architecture/


Thank you
Contact

@pjausovec

peterj.dev

Slides: https://slides.peterj.dev

Demos: https://github.com/peterj/gids-deconstructing-monoliths

105 / 105

https://twitter.com/pjausovec
https://peterj.dev/
https://slides.peterj.dev/
https://github.com/peterj/gids-deconstructing-monoliths

